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Abstract—Mathematical methods for describing univa-
riate and bivariate non-Gaussian random variables and 
processes in their modeling are considered. A decomposition of 
probability density functions (PDFs) using orthogonal polyno-
mials is described for both univariate and bivariate PDFs. It is 
noted that, in both cases, decompositions using the specified 
orthogonal functions can be used in most cases. The area of 
application of the exponential PDF is shown. We give a repre-
sentation of two-dimensional PDF in the form of an Edge-
worth-type expansion by Hermite polynomials. The correlation 
between the correlation function and the bivariate PDF of a 
random process is shown. We analyze the representation of 
one-dimensional distributions by orthogonal Gramm-Charlier 
and Edgeworth series as well as of two-dimensional distribu-
tions in the form of a Hermite polynomial expansion. It is 
noted that Edgeworth's series provides a better approximation 
of PDFs than the Gramm-Charlier series. It is shown that the 
coefficient of excess characterizes the shape of PDF. We con-
sider the method of PDF decomposition by Laguerre polyno-
mials which are used only for one-way PDFs. The field of 
Fourier series decomposition is determined. The formation and 
superposition methods used in the formation of random va-
riables are described. 

Keywords—probability density function, mathematical model-
ing, random variable, orthogonal polynomial, Hermite polyno-
mials, Edgeworth series, Gramm-Charlier series, Laguerre poly-
nomials, kurtosis factor, Fourier series, superposition method 

I. INTRODUCTION 
Multivariate probability density functions (PDFs) are 

known to be widely used to describe non-Gaussian random 
processes [1-4 etc.]. However, it is difficult or impossible to 
define multidimensional PDFs in real-world applications. 
Therefore, various approximate methods are used to describe 
them, which are currently used in radiophysics, radio engi-
neering, radiolocation, telecommunications and information 
and measurement systems [5-10 etc.]. This paper will discuss 
some approximate methods for describing non-Gaussian 
random variables and processes. 

Many scientific publications are devoted to methods of 
formation and modeling of random variables (RV) and 
processes with a given PDF [11-18 etc.]. Independent stan-
dard random variables with uniform distribution on the inter-
val [0, 1] are used to obtain realizations of random variables 

  ~ Rav , , 0,  1,a b a b     

where Rav  is the mathematical sign of a uniform distribu-
tion of a random variable on a given interval, 
and Gaussian independent RV 

  2~ , ,N m    

where m, 2 is, respectively, mathematical expectation and 
variance. 

Non-linear transformation, superposition, piecewise ap-
proximation, Neumann and other methods are used to simu-
late random variables. 

Let's look at and analyze the most common methods. 
The purpose of this paper is to review the mathematical 

methods used to describe univariate and bivariate non-
Gaussian random variables and processes in modeling the 
latter, and to determine the applicability of individual me-
thods. 

II. DECOMPOSITION OF PROBABILITY DENSITY 
DISTRIBUTIONS BY MEANS OF ORTHOGONAL POLYNOMS 
Apply the expression 

      0
,r k kk

W W c Q


      

where {Qk()} is a system chosen in some way of orthonor-
malised, with weight Wr() polynomials, such that 

   0

k i
k ii

Q a


     

for decomposition according to some «reference» law Wr() 
to a given one-dimensional PDF W(). 

Use the expression below to calculate the coefficient ck 

     .k kc W Q d



      

In addition, the coefficients ck can be found from the ex-
pression 


0

,k
k i iwi

c a m


   

if the following expression is used to find the i-th initial mo-
ment W() of the RDF 

   .i
iwW d m      

From 

    0 0
.k

r k k i i iwW W Q a m

 
      
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It is important to note that decomposition 

      0r
N

k kk
W W c Q


      

on N summands fully satisfies the normalization condition, 
which is written as follows 

   1.W d



     

By analogy, it becomes possible to write decompositions 
that are also feasible for two-dimensional PDFs: 

          1 2 1 2 1. 1 2. 2, 0
, .kr k kr r k r

W W W c Q Q


         

In the latter expression, the authors use one-dimensional 
PDFs W(1) and W(2) as «reference» PDFs Wr(1) and 
Wr(2) according to earlier studies [10]. In turn, the named 
one-dimensional PDFs should correspond to a specific two-
dimensional PDF W(1, 2). A selection condition the poly-
nomials Q1.k(1) and Q2.k(2) is that the coefficients are equal 
to zero 0krc   at a given .k r  

In this case we get the expression 

          1 2 1 2 1. 1 2. 2, ,n n nW W W c Q Q        

where      1 2 1. 1 2. 2 1 2,n n nc W Q Q d d



        . 

It should be noted that the same kind of expansion as 
above can also be written for characteristic functions. 

In addition, the above expressions for the decomposition 
of two-dimensional PDF can sometimes also be performed 
for the case of non-orthogonal polynomials Q1.k(1) and 
Q2.k(2). However, this case will not be considered by the 
authors in this paper. 

Note that ambiguity in the choice of an approximating 
family arises in the absence of complete a priori information 
about one-dimensional PDFs. An example of this ambiguity 
is the description of the a posteriori PDF used in signal de-
modulation. An example of this ambiguity is the description 
of the a posteriori PDF used in signal demodulation. 

In [19] we show the use of an exponential PDF to ap-
proximate an unknown PDF W(|) with some uncertain 
parameter  and then determine the unknown parameters of 
the exponential PDF. 

For example, the unknown PDF can be written as is 
represented as 

         1
exp Г ,N

i ci
W


            

where Г(.) is Gamma function. 
It is important to note that in this expression, the follow-

ing systems of functions must be linearly independent (1, 1, 
…, N), (1, …, N). 

Using the normalization condition, it is relatively easy to 
find the gamma function (): 

      01
Г ln exp 1.N

i ii
d




           

The dependence of the process at adjacent points in time 
is reflected in the use of a function  1,h h   . The latter is 
applied if there is a sampling dependence in the exponent for 
the PDF W(|) sought. 

We will assume, as before, that the type of function 
 1,h h    remains a priori unknown. Then it is possible to 

decompose the said function into basis functions using un-
certain coefficients {ij}, , 0,i j N (the line at the top 
represents an averaging over the set): 

      1 1, 1
, .N

h h ij i h hi j  
           

In the case under consideration, the PDF W(|) is con-
verted as follows [10]: 


     

   
1 1

11 1

, exp Г , ,

.

N
h h i i hi

N N
ij i h j hi j

W  

 

          

     


 

  

The expression includes uncertain parameters  = (1, 
…, n),  ij    and a given family of linearly independent 

functions  j x , 1,j N . 
Again, as in the reasoning above, the normalization con-

dition helps to find the gamma function (, ): 

  1 1.h h hW d



       

Using [4], it can be argued that the exponential family 
belongs to the Pearson PDF (in which the Pearson criterion is 
equal to z   ): 

   0 1 exp ,
q qW W

l l
         

   
  

where 


   1 0

3
2 3

1 1; ;
2 exp Г 1

2 4; 1; ,
2

a

a
a

a

dk qm W
l q q

k M
l q k

k k


      



 
        



  

ka is asymmetry coefficient, M3 is 3rd selective central mo-
ment,  is standard deviation, m1 is sample value of the first 
starting torque, () is mathematical sign of the time deriva-
tive. 

It should be clarified that the Pearson PDF used is n-
dimensional normal, exponential, multinomial and bimodal. 

We use an Edgeworth-type expansion of Hermite poly-
nomials to describe the two-dimensional PDF W(t, 1, 2): 

     

1 2

11 2 2
1 2

2 2
1 10 1 01 1 10 1 02

1 2 111
20 0220 02 20 02

1 10 2 01
11

3 01 2 20 0220 02

1 1 1, , exp 1
2 !2

1 1
! ! !

k
k kk

m m k
m k m km mm m k

W t H H
k

H H
m m k





 
  

                                    
      

        
   



 

   
    

  
  

1 2

11 2
1 2

1 10
11

4 01 2 2020 02

1 1
! ! !

m m k
m km mm m k

H
m m k 

  

  
    

 
 

 
 
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 
1 2 1 2

1 1 2 2
1 2

2
1 21 2 1 2

2 01 1 10 2 01
11 1 10.5 0

3 302 20 0220 02 20 02 1 2 1 2

1 1 ,
2 !! ! ! !

m m n n k
m k m n m nkm m n nm m n n

H H H
km m n n

    
   

                                
  

   

     
 

11
11

20 02

 

 

. 

 
Here the symbols where 

1 2 1 2
; ,

m m M n n N      where М 
= 3, 4; N = 3, mean that the summation is performed over all 
such values m1, m2, n1, n2 that 1 2 ;m m M   1 2 ,n n N   
Hn(z) are one-dimensional Hermite polynomials. 

Considering that 

        11 1 1 2 2 12 12 1 2t t B R m m         

is the covariance matrix, which at 

 1 2 0m m    

coincides with the correlation function B12() 


2 102 20; ,        

and 11 coincides with the coefficient R12() (so called the 
dimensionless correlation coefficient), and considering that 
H0() = 1, H1() =  for the case where [10] 

 01 10 1 2 0,m m       

let`s find 


   

    

2 2
1 2

1 2 1 2

1 22

1, exp 1
2 2 2

2 ,n n nn

W B

c H H

 





  
          

  

    
 

where . is a mathematical sign indicating averaging over a 
set. 

Relationship (2) reflects the relationship between the cor-
relation function B() and the bivariate PDF of the random 
process W(1, 2). 

Expression (2) makes it possible to determine the differ-
ence between the two-dimensional PDF of the non-Gaussian 
process [20] under study and its model. In this case the 
model of the named process should be built using the crite-
rion of coincidence of one-dimensional PDF of the real 
process and its correlation function. 

Obviously, the error 

      1 2 1 2, 2 n n nc H H         

depends on the coupling moment of the form 1 2
k rm     , 

where 1,k r   , 1, 2, , .k r     

III. REPRESENTATION OF ONE-DIMENSIONAL PROBABILITY 
DENSITIES BY ORTHOGONAL NETHERLANDS 

With little difference from Gaussian PDFs, the approxi-
mation of PDFs by series of orthogonal polynomials can be 
used to describe unimodal PDFs. The coefficients of the lat-
ter will be determined by the moments of the distributions. 

1. Gramm-Charlier and Edgeworth series. Let us write 
the Gramm-Charlier series using the family of orthogonal 
polynomials of the Gaussian PDF as the weight function: 

      2
0

1 exp 0.5 ,
2 i ii

W c H


    


   

where    1
!n nc W H d

n



     is the decomposition fac-

tor, 

       2 21 exp exp
n

n
n n

dH y y y
dy

     is the Hermite po-

lynomial satisfying the recurrence relation 



     
     
   

1 1

2
0 1 2

3 4 2
3 4

2 2 ,  1;

1; ; 1;

1; 5 3.

n n nH y yH y nH y n

H y H y y H y y

H y y H y y y

   

   

    

  

The use of cumulants ξk  of PDF W() allows decompo-
sition coefficients to be obtained [21]. 

A normalized random variable can be written in the fol-
lowing form: 



   

 

 

3 4
01 1 2 3 4

2
6 3 7 4 35

5 6 7

2
8 5 3 4

8

3
9 6 3 5 4 3

9

1; 1; ; ;
3! 4!

10 35
; ; ;

5! 6! 7!
56 35

;
8!

84 126 280
.

9!

c c c c c

c c c

c

c

 

    

   

     

    

 
  

 


  


 

    

   

     

 

For the case of a normalized random variable, let's ex-
press the PDF W() as a series of Edgeworth PDFs 



   

     

     

2

2
3 34

3 4 6

5 4 5 6
5 7 6

1 exp 0.5
2

101
3! 4! 6!

35
.

5! 7! 6!

W

H H H

H H H

    


       


      


 

   

 

In the absence of normalization the Edgeworth series can 
be written as follows 



   

 

 

2
3

2

2

2

1, 1 ;
3!

exp
2

, ,
2

N n
nnn

b mW N m H

m

N m



             
      
 



  
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where  2,n
n n

mb N m H d




        is decomposition 

coefficients, also called quasimoments. 
If a Gaussian distribution is considered, all quasimoments 

are zero when the inequality n  3. 
Let's write down the first two coefficients, called the 

coefficient of asymmetry ka (which we have already men-
tioned earlier) and the coefficient of kurtosis kk: 

 3 3 3 4 4 4
3 3 3/ 2 4 4 2

2 2

; 3 .a k
b M b M

k k      
   

 
 

  

The coefficient of kurtosis characterizes the shape of the 
PDF. For example, if kk > 0, then the PDF is characterized by 
a «pointed» top. Otherwise (at kk < 0) the top of the PDF will 
be flatter. 

To determine the i-th order central momentum, use the 

expression    i
iM m W d




     . 

The relationship between the cumulants i  of a norma-
lized random variable  and the cumulants i  of a non-
normalized random variable  is defined by the relation 


2

2
.i

i















  

Here is an expression linking the above expressions of 
the PDF of the non-normalized W() and normalized W() 
random variables 

  
2 2

1 iW W 

 

  
  
 
 



 



 
  

If a fixed maximum order of applied cumulants is used, 
the Edgeworth series gives a better approximation of the 
PDF W() than the Gramm-Charlier series. 

2. Laguerre polynomial expansion. It was noted earlier by 
the authors [10] that the Edgeworth series has slow conver-
gence for one-sided and defined only for positive values of 
the PDF argument. Using Laguerre polynomials to decom-
pose the PDF in this case would be preferable. 

The PDF of a gamma distribution is a weight function of 
a family of orthogonal polynomials: 

        0
exp ; 0,i ii

W c L 


         

which uses a generalized Laguerre polynomial 

         exp
exp exp ; 1.

!

n
n

n n

dL
n d

 
      


  

Write down the first five Laguerre polynomials 
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where the designation 
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Here is an expression to approximate the simplest ap-
proximation of the PDF W() by the Laguerre polynomial: 

    
1 exp .

Г 1
W


    

           
 

In formula (3), the parameters  and  are expressed in 
terms of the mathematical expectation m1 and variance 2 of 
the PDF W() 


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1 1 2 1

2
2 1 1 1

1 1; .
m m m m
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The known functions k(, t) and unknown coefficients 
 ˆ , tg  allow one-dimensional PDFs W(, t) to be written as 

follows: 
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where 
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g(, t) refers to the one-dimensional characteristic func-
tion of the PDF W(, t). The named characteristic function, in 
turn, can be written as an equivalent sum: 

      1
, , , .M

k kk
t t t


    g g   

Here are some fixed values of the argument of the characte-
ristic function 1, …, m, as well as known functions k(, t)  
that obey the conditions  ,k v kvt     (k is the Kroneck-
er symbol). 

As a result, determining the values of one-dimensional 
characteristic functions at certain points 1, …, m allows us 
to describe the representation of the PDF at given functions 
k(, t). 

3. Fourier series expansion. We use the Fourier series to 
represent a one-dimensional PDF that is different from zero 
at the interval [a, b]: 
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In addition, if it is specified that a b   and one-
dimensional PDF W() is an even function, then the above 
expressions can be simplified: 
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When calculating an estimate of the PDF, their estimates 
ak expressed as polynomial or semi-invariant estimates, are 
used instead of ak coefficients. 

IV. METHODS OF TRANFORMATION AND SUPERPOSITION 
IN THE FORMATION OF RANDOM VARIABLES 

It is based on the determination of the PDF RV  = () 
derived from the non-linear transformation of RV . 

A transform (x) is said to be smooth, monotonically in-
creasing  ' 0x  , where () is the mathematical sign of the 
time derivative, if it has an inverse transform such that 

 x y  . 
Since for the RV distribution functions  and  the equal-

ity is valid 

    1 ,F x F x
       

then by differentiating, we get 
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By putting in expression (1) 

     ,x F x    

get   .F x x   
That is, the random variable  has a uniform distribution. 
As a result, if a random variable  is transformed by a 

non-linear transformation equal to its distribution function, 
we obtain on the interval [0, 1] a uniformly distributed RV. 

If in expression (4) you put 

    1x F x    

and the given distribution function F(x) is used here, and 

    Rav 0,1 , ,F x x    

we obtain that the RV  we obtain that the 
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11 .F x F x F x


       

This rule is the basis of the method of forming a RV with 
a given distribution function. 

Note that in this case it is necessary to perform a non-
linear transformation  1 ,F     meaning the solution of 
the equation in the form 

    , Rav 0,1 .F       

Let us consider an example. Suppose we want to generate 
a random variable with a PDF 
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By integrating W(x), we obtain an expression for the dis-
tribution function 
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From this we get the equation 

  
2 2

1 12 ,1 Rav 0,1 ,a x
a


       

from which the modeling algorithm follows 

 21 ,a      

where 1.1     
The superposition method, which is used to generate ran-

dom variables with a PDF of the following form, is wide-
spread 

    1 1
, 0,  1.n n

i i i ii i
W p W p p

 
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It is performed in two steps. 
In the first step, a discrete RV is implemented, taking 

values 1, n with probabilities. 
In the second step, after obtaining the value of k, a value 

is generated with Wk(), he value of which is taken as . 
Models (5) are called PDF mixtures W1(), …, Wn(). 
Consider an example of the formation of a random varia-

ble that has a PDF 

      2 2

2 2

0.5 exp exp ,
2 22

m m
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  

where  is standard deviation of a random variable. 
As can be seen, W() is a mixture of two Gaussian PDFs 

with equal variances 2, means m  and weights p1 = p2 = 
0.5. 

According to superposition methods, the algorithm for 
generating a random variable is as follows 

 ,x m       

where  0,1x N , and m takes equal probability two values 

m  where  0,1x N , and m  takes equal probability two 
values m . 

V. CONCLUSION 
The paper considers issues related to mathematical me-

thods of describing non-Gaussian random variables and 
processes. The use of orthogonal polynomials for decompo-
sition of univariate PDFs is described. It has been shown 
that ambiguity in the selection of the approximating family 
appears when there is no complete a priori information 
about one-dimensional PDFs. 

Use of Edgeworth series on Hermite polynomials for de-
scription of two-dimensional PDF is given. It is noted that 
the use of the matching criterion of the one-dimensional PDF 
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of the real random process and the correlation function al-
lows to determine with sufficient accuracy the degree of dif-
ference between the two-dimensional PDF of the named 
process and the constructed model. 

The use of orthogonal series to represent one-
dimensional PDFs is described. It has been shown that the 
approximation of PDF with rows of orthogonal polynomials 
is successfully used to describe unimodal PDF close in form 
to Gaussian. At the same time, the coefficients of polyno-
mials are determined by the moments of distributions, oth-
erwise by the Edgeworth and Gramm-Charlier series. With a 
fixed maximum order of cumulants used, the use of the Ed-
geworth series is desirable. 

The use of Laguerre polynomials and Fourier series de-
composition is given. It has been shown that for the decom-
position of PDF according to the Laguerre polynomial, it is 
more acceptable for one-sided PDF defined for positive val-
ues of the argument. It is also possible to use a Fourier series 
to represent a one-dimensional PDF given at a certain final 
value interval. 

A method for transforming random variables, based on 
determining the PDF of a RV derived from a non-linear 
transformation of the random variable itself, is described. 
The content of the superposition method, also used to form 
random variables, is given. 
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