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Abstract—Issues related to estimating the influence of 
quasi-deterministic and fluctuating multiplicative noise on the 
delay resolution and frequency resolution of systems 
processing radio signals based on the Woodward criterion for 
narrow-band and broadband signals are considered. The 
problem of resolution when detecting or measuring signal 
parameters can be considered both for useful signals alone and 
for cases when interfering signals are present as well. It is 
pointed out that the effect of multiplicative noise on the signal 
almost always leads to a resolution problem. It is shown, that 
under the influence of significant broadband multiplicative 
noise, the time resolution interval is determined only by the 
signal envelope and does not depend on its phase structure. For 
instance, for signals with a rectangular or bell-shaped 
envelope, it is equal to the equivalent signal duration. 
Examples of calculating resolution intervals under the 
influence of multiplicative noise are given. Taking into account 
the effect of multiplicative noise on signal resolution leads to an 
increase in the efficiency of radio systems, detection of objects 
being an example. 

Keywords—radio engineering system, resolution problem, 
resolution, Woodward criterion, noise modulation function 

I. INTRODUCTION 
For a wide class of radio systems, along with the primary 

characteristics that determine the quality of their operation, 
such as the probability of detecting a signal and the accuracy 
of measuring its parameters, there are indicators determining 
the ability to separately detect or measure parameters of 
signals with closely located responses at the output of the 
system's receiver. The problem of resolution of separate 
observations or measurement of signals’ parameters occurs, 
for example, in radio detection and location when two or 
more closely located targets are observed. In this case, 
signals from all targets are useful. Other radio systems may 
have the problem of resolution of multiple signals, when one 
of them is useful while all others are interfering. Interfering 
signals can be generated by other radio devices of the same 
type and by systems operating in close proximity to the radio 
system in question. 

Note that in many cases, although in the absence of 
multiplicative (modulating) noise (MN), problems of 
resolution do not arise, since the mutual influence of signals 
on each other and on the operation of the system for each 
signal separately is insignificant, in the presence of MN such 
mutual influence can be very noticeable. This is due to the 
fact, that in signals distorted by MN, a noise component 
appears, which can create the output effect of the receiver at 
the values of the signal parameters, such as arrival time and 
frequency shift, whereas the output effect on them in the 
absence of MN is negligible. 

The effect of MN on the resolution of systems whose 
linear part of the receiving device includes a filter matched 
with the undistorted signal is also due to a decrease in the 
output signal power relative to the power of additive noise 
(AN). 

The simplest criterion for estimating the resolution was 
introduced by Rayleigh in relation to problems of the theory 
of optical devices. According to this criterion, two identical 
point sources are considered to be resolved if the total 
response of the device for the corresponding coordinate, a 
parameter l, has two maxima. Obviously, the interval 
between responses, the resolution interval at which the above 
condition is met, coincides with the corresponding response 
width of the device. For the first time in relation to radio 
signals, the Rayleigh criterion of resolution was considered 
by F. Woodward [1]. 

The shape of the signal at the output of the receiver, 
which is optimal when receiving an undistorted signal 
against a background of white noise, at the parameter l is 
determined by the autocorrelation function of the signal for 
this parameter  l . Therefore, the Rayleigh characteristic 
of the resolution coincides with the width of the main peak of 
the module of the autocorrelation function. Often, the 
resolution interval is determined by the width of the square 
of the autocorrelation function module. In practice, both 
methods of determining the resolution interval are 
equivalent. 

As a measure of the resolution interval, the width of the 
square of the autocorrelation function module will be used. 
Quantitatively, the width of the main peak of the square of 
the autocorrelation function module, the resolution interval lp 
can be estimated in various ways, for example, by a certain 
level specified in a certain way, or by the width of an area-
equivalent rectangle. The second method of estimation is 
most widely used, both due to the simplicity of definition and 
the unambiguity of the obtained estimates [2]. In the 
presence of fluctuating MN, the output signal of the 
receiving device is the implementation of a non-stationary 
random process. Therefore, the resolution interval can only 
be defined statistically, for example, the equivalent width of 
a function describing the dependence of the average output 
power of the receiver on the parameter l. 

II. WOODWARD CRITERION 
When assessing a resolution, the Woodward criterion is 

to a certain extent conditional and makes sense only in 
relation to the resolution of signals of the same intensity. 
When distinguishing a weak signal from a strong one, it is 
necessary to take into account the behavior of the signal 
autocorrelation function  l  for all values of the interval 
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l  between signals, and not only in the vicinity of the main 
peak of the autocorrelation function l L  , where L is the 
total length of the signal at the parameter l. It becomes 
especially important in the presence of MN. Due to the 
influence of MN, the output signal of the receiving device 
decreases, and the relative level of signal power beyond its 
main maximum increases. Therefore, in the presence of 
MN, the mutual influence of signals increases beyond the 
main maximum of the autocorrelation function of the 
distorted signal. In addition, the Woodward criterion has 
another drawback: this criterion does not allow us to take 
into account the influence of AN on the resolution 
characteristics. 

When using the Woodward criterion to quantify the 
resolution in the presence of MN, additional restrictions arise 
due to the challenges of this problem, such as the presence of 
two components in the signal distorted by MN. The response 
generated by the undistorted part of the signal has the same 
resolution width as the receiver's response to the undistorted 
signal. 

The response width generated by the noise component 
can be significantly larger. In cases when the distribution of 
the total power of the signal distorted by MN at the output of 
the reception device at the parameter l, the amount of power 
of the undistorted part and the noise component of the signal 
has a sharp "emission" in the vicinity of the points where the 
signals are undistorted, the use of the Woodward criterion to 
assess the impact of MN on the performance of the 
resolution is possible. This occurs under the following 
assumptions about the energy characteristics of the signal at 
the output of the linear part of the receiver: 

– the power of the undistorted part of the signal is small 
compared to the power of the noise component  2

s l  at the 
point where the undistorted part reaches its maximum; 

– the function  2
s l  is sufficiently smooth and convex 

on the interval which is not smaller than the equivalent width 
of this function. 

In cases where one or both of the stated conditions are not 
met, applying the Woodward criterion may result in errors. 

Although the above conditions significantly limit the 
possibility of applying the Woodward criterion when 
analyzing the effect of MN on signal resolution conditions, 
this criterion is convenient due to its simplicity. In cases 
where the stated conditions are met, it allows us to obtain 
simple relations that are suitable for engineering estimates. 
We will consider and analyze the effect of MN on resolution 
of radio systems according to the Woodward criterion. 

III. ESTIMATING THE IMPACT OF MN ON RESOLUTION BY THE 
WOODWARD CRITERION 

Let us consider the influence of quasi-deterministic and 
fluctuating MN on delay resolution  and frequency 
resolution  of radio signal processing systems based on the 
Woodward criterion. 

In the absence of MN, the intervals for delay resolution 
and frequency resolution can be found based on the 
expressions: 
   2

.0 ,0 ;r d



       

   2
.0 0, ,r d




       

where  ,    is an autocorrelation function of the signal. 
Expressions (1), (2) define the resolution intervals as a 

rectangle width with the height equal to, equivalent in area to 
the function     2 2

,0 0,     . 

In the presence of quasi-deterministic or fluctuating MN, 
it makes sense to consider only the means of ensemble 
values included in expressions (1), (2). 

Note, that in the presence of MN, the Woodward 
criterion can be used only in cases when the power level of 
the undistorted part of the signal is small as compared to the 
power of the noise component of the signal at such parameter 
 or , at which the undistorted part of the signal reaches its 
maximum, while the function  2 ,s    describing the power 
distribution of the noise component on the plane , , is 
smooth. In this case, the undistorted part of the signal can be 
ignored, and the resolution intervals can be defined as the 
equivalent width of the area occupied by the noise 
component. Then, by analogy with (1), (2), we write the 
relations for determining the resolution intervals for delay 
and frequency in the presence of MN: 


   

   

2
. 2

2
. 2

1 ,0 ;
0,0
1 0, ,
0,0

r m s
s

r m s
s

d

d









      

    
 




 

where  2 ,s    is the variance of the noise component of 
the signal at the output of the linear part of the receiver. 

In expressions (3), it is assumed that the function 
 2 ,s    has a single maximum coinciding with the 

maximum of the function   2
,    in both coordinates. The 

latter condition is obviously satisfied if the energy spectrum 
of the noise modulation function  M t  is symmetric with 
respect to zero. 

Here       expM t t i t    is the noise modulation 
function (NMF), which fully characterizes the parasitic 
modulation of the signal;    0 1 0t t         is a 
dimensionless multiplier that characterizes changes in the 
signal envelope caused by MN (amplitude distortion); 0 is 
mathematical expectation  t ;  t  is a stationary random 

process with zero mean  1 0t     ;  t are changes in 
the signal phase caused by MN (phase distortion). 

Note that the correlation function  M t  is a real 
function. 

For rather narrow-band MN, when there is a limit relation 

       22 2 2 2 2
0, 0,5 ,,s C E           

as expected, (3) transforms into (1), (2). 
Here 0s     is the detuning of the signal  u t

 
undistorted by fluctuation MN, with the carrier frequency r, 
with respect to the filter setting frequency 0; C is a constant 
coefficient depending on the filter gain; E is signal energy; 
0 characterizes a part of the signal undistorted by 
fluctuation MN;  ,    is the autocorrelation function of 
the signal. 
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A straight line at the top means averaging over the set. 
We express the resolution intervals of signals distorted by 

MN in terms of arrival time and frequency (3) directly 
through the characteristics of the input signals and the 
characteristics of the NMF. 

IV. FREQUENCY RESOLUTION INTERVALS 
In accordance with (3), in order to determine frequency 

intervals, first of all it is necessary to consider the following 
integral 
  2

1 0, .sI d



     

Taking into account the general expression for the 
variance of fluctuations of the signal distorted by the 
fluctuation MN, at the output of the linear part of the receiver 
matched with the undistorted signal, for I1 we obtain 

    
2 2

2
1 0, ,

4 V
C EI G d d

 

 
     

     

where  VG   is energy spectrum of fluctuations of the 
NMF. 

As, by definition, 

    2 2
.0 ,0, 0, rd x dx








          

then, provided that MN does not change the average signal 

power is   2 1t  , taking into account the expression [1] 

  
 2

02 1
0 ,V

m

G
  




 

where m  is the equivalent width of the NMF fluctuation 
spectrum, we will get 

  
2 2

2
1 0 .01

4
.r

C EI   


 

In this case, for the frequency resolution interval of 
signals in the presence of MN .r m , a very simple expression 
is obtained 
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 
 

2
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. 2
1

1
,

2 0,0
r

r m

 
 


 

where 
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2
1 2 2

,
, s

C E
  

     

is normalized variance of the noise component of the signal, 
defined by the expression 

       22
1

1, , .
4 VG d

 

 
        

     

The value  2
1 0,0  can be expressed simply by the 

characteristics of the NMF and the signal envelope at slow 
and fast MN. In the case of slow MN, we get 


     
       

2
1 0

1 2
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10,0 0 0,0 0 .
2
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 
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



 


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where  VB   are derivatives of the correlation function of 
the NMF fluctuations. 

Assuming the correlation function of NMF fluctuations 
 VB   to be a real function and the distortions of the 

amplitude and phase of the received signal are independent, 
with the accepted normalization of the total power of the 

signal distorted by MN   2
1M t  

 
 , we have 


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0 0
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. 2 2
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,
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1
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r
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m
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t
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

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
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where    2 2
V Vm G d G d

 

 
         is the RMS 

width of the spectrum of the NMF. 
In the case of fast MN in the expression 

       22
1

10,0 0, ,
2 VG d




     

    

included in the general formula for .r m  (4), the function 

 VG   changes much more slowly than   2
0,  . 

Expanding  VG 
 
into a Taylor series in the vicinity of 

the point 0   and using only three terms of the expansion, 
we get the case when      0 0V V VG G G      , 


 

.
2

.0 .0

,11 0
2

r m

r

m

VG




 
  

where    2 22 2
.0 0, 0, ;r d d

 

 
            

      1
.0 0 .V V VG G G


    

As the width of the NMF spectrum m  increases, the 
function  .0 0VG

 
monotonically decreases if  VG 

 
is a 

smooth convex function. In this case, as can be seen from 
(9), the resolution interval .r m  tends to м , that is, the 
frequency resolution is determined by the width of the NMF 
spectrum. 

Note that expression (9) allows us to generally estimate 
the limits of validity of such a conclusion, that is to set the 
value m  at which . mr m  . 

V. INTERVALS OF TIME RESOLUTION 
When defining time resolution intervals in accordance 

with (3) and the expression 


     

 

2 2
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2 2 2
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, ,
4
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C E




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
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where       22
1

1, ,
4 VG d




         

    is 

normalized variance, the following integral must be 
considered 

     2
2

1 , .
2 VI G d d

 

 
      

     

Representing   2
,    as a double integral of the 

complex envelopes of the t1 and t2 signals, after sequentially 
integrating over  and , and then after replacing the 
variables 1 ,t t  1 2 ,t t x   integrating over t, we get the 
expression for I2 in the form of a single integral: 

     2
2 ,0 .VI B x x dx




    

Substituting (10) in (3) gives the desired expression for 
the time resolution integral in the presence of MN 

      2 2
. 1,0 2 0,0 ,r m VB d




         

where  2
1 0,0  is determined by (5). 

We will estimate the effect of MN on time resolution 
intervals for signals with      , ,p r       where 

 p   is the probability density of a random variable ; 

 r   is the correlation coefficient . For this type of signal 

 2
2 .0 12 0, 0 .rI     Substituting the above expression in (3), 

it can be seen that р.м р.0 ,    which means that MN does not 
affect time resolution intervals when using signals whose 
autocorrelation function can be represented as 
     , .p r       Such autocorrelation function is 

provided, in particular, by bell pulse signals with a constant 
pulse-modulated frequency, as well as pulse signals with a 
rectangular envelope and a constant pulse-modulated 
frequency, signals with noise modulation and phase-code 
manipulation at large values of the product of the spectrum 
width by the signal duration [1, 3, 4]. 

For slow MN, the correlation function  VB   included in 
(11) can be represented by a Taylor series in the vicinity of 
the point 0   and restricted to the first terms of the 
expansion, since it changes more slowly than   2

., 0   
Then, taking into account (7), (8), we get 
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where 
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 
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In the case of fast MN, by expanding the signal 
autocorrelation function  , 0   into a Taylor series, which 
changes much more slowly than   ,VB   from (11) taking 
into account (9), we obtain the following approximate 
expression for the resolution interval: 


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.
.

2 2.0
.0 .

212 ,
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2

k V
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r
r k V

 

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where 
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 

 
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is RMS correlation interval of the NMF; 2 is RMS width 
of the signal spectrum. 

As the NMF correlation interval decreases and the width 
of its energy spectrum increases, the value 2

.k V  

monotonically tends to zero. In this case, when 2
. 0,k V   the 

limit value of the resolution interval is determined by the 
ratio 

 .
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2 .r m
r





  

According to (2) 
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where  U t  is envelope of the signal. 
Taking into account, that 

     1 2 1 2exp 2 ,j t t d t t



       

from (13) and (14) we will get 
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
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For signals with rectangular envelopes with duration T: 
22E U T  and .r m T  . For a bell-shaped signal envelope 

   2 2exp ,U t t T     the limit value of the resolution 

interval .r m  is also determined by the duration T of the 
signal. 

Thus, for very wide-band MN, the time resolution 
interval is determined only by the signal envelope and does 
not depend on its phase structure. For signals with a 
rectangular and bell-shaped envelope, it is equal to the 
equivalent signal duration. 

VI. EXAMPLES OF CALCULATING RESOLUTION INTERVALS 
UNDER THE INFLUENCE OF MULTIPLICATIVE NOISE 

The resolution intervals will be calculated in the 
following order. First, we will determine the resolution 
intervals for slow and fast MN in relation to signals defined 
only by the shapes of their envelopes and energy spectra, and 
then, based on the general expressions (6) and (11), we will 
calculate the frequency and arrival time resolution intervals 
for specific probing signals. 

Especially suitable for use in the estimation of 
multiplicative noise under conditions of resolution signals 
with intra-pulse angular modulation. 
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We will express the parameters .0r , 2
.0r , .0r , 2

.0r  
characterizing the properties of undistorted signals in the 
formulas (14), (9), (1), (12), through the envelope and energy 
spectrum of signals calculated by authors earlier. 

Considering known expressions for the delay and 
frequency autocorrelation function [3, 5] for the signal 
parameters of interest to us, the following ratios can be 
obtained: 

    
2

24
.0 2 ;r U t dt U t dt

 

 

         

      
2

2 2 2 2
.0 2 ;r U t U t dt U t dt

 

 

              a

      
2

2
.0 2 ;sr s sG G d G d

 

 

              

      
2

2
.0 2 .sr s sG G d G d

 

 

             a

From expressions (15), (15a), (16), (16a) we get: 
expressions (17) – with slow MN, expression (18) – with fast 
MN, where ;TT T    :s     
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2

,
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2

1 11 1 1
2 2 2

;
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2
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T
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T





                          
                

 
           

  
     
  




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2
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2
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k

r m
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G
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  
                
                                        




 

 
 
We will consider the effect of MN on time and frequency 

resolution intervals for specific narrow-band and broadband 
signals, and use the expressions (4), (3), (11) to determine 
these values. During calculations, we assume that the 
spectrum of NMF fluctuations is bell-shaped. 

Signal with constant pulse-modulated frequency and a 
bell-shaped envelope. Substituting the expression  2 0,s 

 
for a signal with a bell-shaped envelope, in (4), we obtain the 
following relation for the frequency resolution interval: 

 2

.0

. 1 .r

r

m
  


 

Linear frequency-modulated (LFM) signal. When a 
signal envelope is bell-shaped and the expression for a bell-
shaped signal with a constant pulse-modulated frequency is 
taken into account 

 
 

 

2 2 2 2
2 2 202

2 22
, exp exp ,

4 12 1
s

C E T
T

              
          

omitting intermediate mathematical calculations, we will 
obtain 


2

0.

2

. 2 2

1 1
.

1
y

r

y

r m

Q

Q

  
  

  
 

It is obvious that the expression (20) for  2 21yQ     
up to a constant factor transforms into (19), which is quite 
natural, since there is a linear relationship between the 
frequency and time shift in the auto-correlation function of 
the LFM signal. 

In the case when the LFM signal has a rectangular 
envelope, in order to calculate the arrival time resolution 
interval based on expression (3), the approximate ratio for 
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 2 0,s   can be used, which is true even when 

1 3.
2 mT   


 

Then we get 


 . 2

1 1 .
0

y

V
m

T

VTr

Q
G d

G TT

    
     

  
  

For the case when the NMF spectrum is bell-shaped 

    
2

0 exp ,V
m

VG G
 

   
 

 

from (21) we get 

 . 2.

2

0

2
2 Ф 1 exp ,

2r m
y y

r
y

Q Q
Q

                             


where
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2

0

1Ф exp .
22

x tx dt
 

  
  
  

When 2 1yQ   и 1yQ   from (22) we obtain the 
following approximate relation: 

 .0. .r m r    

In this case (23) coincides with (21). 
Thus, when 2 3yQ   

 
the effect of MN on the delay 

resolution interval when using LFM signals does not depend 
on the shape of the signal envelope and is determined only 
by the width of the NMF spectrum. 

Phase-shift (PS) signal with a rectangular envelope. 
Formally, after substituting the expression 


 

 

 
 

2

2 2 2 2
0

2 2 2
0

2

2 0,0
,   0;
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,            ,

s

s

l
l t E

E N l
l N

N

 


   


   
 


  

in (3) and after some necessary calculations 


 

2

..
0

0 2
1

1
1 ,

2 0,0r m r

  
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  
 

where  2
12 0,0  is determined by the expression [6]. 

Note that (25), the same as (24), is valid when N  . 
In addition, it is assumed 1.N   

Given that  
2

2 0
1

1
3 0,0 ,


  


  we can see that (25) 

coincides with (23). In other words, the Woodward criterion 
formally indicates the same effect of MN on the time-of-
arrival resolution for both LFM and PS signals. 

However, the use of the Woodward criterion for 
analyzing the effect of MN on the resolution conditions of 
PS signals when N   results in erroneous results even in 
cases where the undistorted part of the signal 2

0  is zero. 

This is because the function  2
1 ,0   has a pronounced 

narrow outlier at the point 0  , and the width of the 
specified outlier is .0 .r  

Thus, in this case, even when 2
0 0,   the above 

condition for the applicability of the Woodward criterion to 
estimating the impact of MN on the resolution conditions is 
not met. 

The ratio of the noise power component of the output 
signal at the point 0   to its power at the point .0r  

 
in 

this example is N   when 3,   1.N   If the ratio is 
large, then the two signals can be resolved even when the 
difference between the arrival time is close to .0 .r  All other 
things being equal, the statement is the more true, the larger 
N, the more code elements are formed by PS signals. 

Consequently, the Woodward criterion generally cannot 
be used to estimate the resolution interval for the time of 
arrival of PS signals in the presence of MN. The results 
obtained on the basis of this criterion make sense only in the 
limiting case, when N   and the influence of the "outlier" 
function  2

1 ,0 
 
at the point 0   can be ignored. 

VII. CONCLUSIONS 
The effect of multiplicative noise on time and frequency 

resolution intervals for specific narrow-band and broadband 
signals is considered and analyzed. The effect of 
multiplicative noise on a signal with a constant pulse-
modulated frequency and a bell-shaped envelope, on a signal 
with linear frequency modulation, and on a phase-shift signal 
with a rectangular envelope is analyzed. During the 
calculation, it was assumed that the spectrum of fluctuations 
in the noise modulation function has a bell-shaped shape. It 
was shown, that the effect of multiplicative noise on the 
delay resolution interval when using linearly frequency-
modulated signals does not depend on the shape of the signal 
envelope and is determined only by the spectrum width of 
the noise modulation function. It was shown that the 
Woodward criterion cannot generally be used to estimate the 
resolution interval for the arrival time of phase-shift signals 
in the presence of multiplicative noise. 
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